Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal.

Superparamagnetic ascorbic acid-coated Fe(3)O(4) nanoparticles with a high specific surface area were successfully synthesized via an environmentally friendly hydrothermal route in the absence of any templates. The as-synthesized ascorbic acid-coated Fe(3)O(4) nanoparticles have a diameter of less than 10 nm, thus leading to a high specific surface area of about 179 m(2)/g, which is even larger than those of well-defined mesoporous structures. The only used capped agent is ascorbic acid, which serves as a functionalized molecule to make sure the high dispersibility and stability of the ascorbic acid-coated Fe(3)O(4) nanoparticles in aqueous solution. The ascorbic acid-coated Fe(3)O(4) nanoparticles exhibit superparamagnetic properties at room temperature and saturation magnetization approaches 40 emu g(-1). The ascorbic acid-coated Fe(3)O(4) nanoparticles were evaluated as an absorbent to remove heavy metal arsenic from wastewater. The adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 16.56 mg/g for arsenic (V), and 46.06 mg/g for arsenic (III).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app