JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells.

We have successfully synthesized GSH and TGA co-capped CdTe quantum dots (QDs) with good biological compatibility and high fluorescence intensity. The effects of different reaction time, temperature, pH value, ligand concentration and the molar ratio of GSH/TGA were carefully investigated to optimize the synthesis condition. The optical properties of as-prepared CdTe QDs were studied by UV-visible absorption spectrum and fluorescence spectrum, meanwhile their structure and morphology were characterized using transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR) and X-ray powder diffraction (XRD). Compared with the CdTe QDs that are single-capped with either GSH or TGA, the GSH-TGA co-capped CdTe QDs demonstrated significantly improved fluorescence intensity and optical stability. In addition, GSH-TGA co-capped CdTe QDs were conjugated to amonoclonal antibody ND-1. The GSH-TGA co-capped CdTe QDs-antibody probe was successfully used to label colorectal cancer cells, CCL187, in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app