JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of long-term feeding of chitosan on postprandial lipid responses and lipid metabolism in a high-sucrose-diet-impaired glucose-tolerant rat model.

This study was designed to investigate the effects of long-term feeding of chitosan on postprandial lipid response and lipid metabolism in a high-sucrose (HS)-diet-impaired glucose-tolerant rat model. As the results, HS-diet-fed rats supplemented with 5 and 7% chitosan in diets for 9 weeks had lower postprandial plasma total cholesterol (TC) levels, but 7% chitosan in the diet had higher postprandial plasma triglyceride (TG) and TG-rich lipoprotein TG levels. Supplementation of chitosan significantly decreased the postprandial ratio of apolipoprotein B (apoB)48/apoB100 in TG-rich lipoprotein fractions of HS-diet-fed rats. Long-term supplementation of 5 and 7% chitosan in diets for 16 weeks had lower plasma TC, low-density lipoprotein cholesterol (LDL-C) + very low density lipoprotein cholesterol (VLDL-C), TC/high-density lipoprotein (HDL-C) ratio, leptin, and tumor necrosis factor-α (TNF-α) levels in HS-diet-fed rats. Moreover, it was noticed that the VLDL receptor (VLDLR) protein expression in skeletal muscles of HS-diet-fed rats was significantly decreased, which could be significantly reversed by supplementation of 5 and 7% chitosan. Rats supplemented with 7% chitosan in the diet significantly elevated the lipolysis rate and decreased the accumulation of TG in epididymal fat pads of HS-diet-fed rats. The plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected in HS-diet-fed rats, but it was significantly increased in 7% chitosan-supplemented HS-diet-fed rats. Taken together, these results indicate that supplementation of chitosan in the diet can improve the impairment of lipid metabolism in a HS-diet-fed rat model, but long-term high-dose chitosan feeding may enhance postprandial plasma TG and TG-rich lipoprotein TG levels in HS-diet-fed rats through an ANGPTL4-regulated pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app