OPEN IN READ APP
JOURNAL ARTICLE

Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis

Koji Takahashi, Ken-ichiro Hayashi, Toshinori Kinoshita
Plant Physiology 2012, 159 (2): 632-41
22492846
The phytohormone auxin is a major regulator of diverse aspects of plant growth and development. The ubiquitin-ligase complex SCF(TIR1/AFB) (for Skp1-Cul1-F-box protein), which includes the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) auxin receptor family, has recently been demonstrated to be critical for auxin-mediated transcriptional regulation. Early-phase auxin-induced hypocotyl elongation, on the other hand, has long been explained by the acid-growth theory, for which proton extrusion by the plasma membrane H(+)-ATPase is a functional prerequisite. However, the mechanism by which auxin mediates H(+)-ATPase activation has yet to be elucidated. Here, we present direct evidence for H(+)-ATPase activation in etiolated hypocotyls of Arabidopsis (Arabidopsis thaliana) by auxin through phosphorylation of the penultimate threonine during early-phase hypocotyl elongation. Application of the natural auxin indole-3-acetic acid (IAA) to endogenous auxin-depleted hypocotyl sections induced phosphorylation of the penultimate threonine of the H(+)-ATPase and increased H(+)-ATPase activity without altering the amount of the enzyme. Changes in both the phosphorylation level of H(+)-ATPase and IAA-induced elongation were similarly concentration dependent. Furthermore, IAA-induced H(+)-ATPase phosphorylation occurred in a tir1-1 afb2-3 double mutant, which is severely defective in auxin-mediated transcriptional regulation. In addition, α-(phenylethyl-2-one)-IAA, the auxin antagonist specific for the nuclear auxin receptor TIR1/AFBs, had no effect on IAA-induced H(+)-ATPase phosphorylation. These results suggest that the TIR1/AFB auxin receptor family is not involved in auxin-induced H(+)-ATPase phosphorylation. Our results define the activation mechanism of H(+)-ATPase by auxin during early-phase hypocotyl elongation; this is the long-sought-after mechanism that is central to the acid-growth theory.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
22492846
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"