JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.

Bioinformatics 2012 June 2
MOTIVATION: The increasing availability of second-generation high-throughput sequencing (HTS) technologies has sparked a growing interest in de novo genome sequencing. This in turn has fueled the need for reliable means of obtaining high-quality draft genomes from short-read sequencing data. The millions of reads usually involved in HTS experiments are first assembled into longer fragments called contigs, which are then scaffolded, i.e. ordered and oriented using additional information, to produce even longer sequences called scaffolds. Most existing scaffolders of HTS genome assemblies are not suited for using information other than paired reads to perform scaffolding. They use this limited information to construct scaffolds, often preferring scaffold length over accuracy, when faced with the tradeoff.

RESULTS: We present GRASS (GeneRic ASsembly Scaffolder)-a novel algorithm for scaffolding second-generation sequencing assemblies capable of using diverse information sources. GRASS offers a mixed-integer programming formulation of the contig scaffolding problem, which combines contig order, distance and orientation in a single optimization objective. The resulting optimization problem is solved using an expectation-maximization procedure and an unconstrained binary quadratic programming approximation of the original problem. We compared GRASS with existing HTS scaffolders using Illumina paired reads of three bacterial genomes. Our algorithm constructs a comparable number of scaffolds, but makes fewer errors. This result is further improved when additional data, in the form of related genome sequences, are used.

AVAILABILITY: GRASS source code is freely available from https://code.google.com/p/tud-scaffolding/.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app