Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Corticomotoneuronal integrity and adaptation in spinal muscular atrophy.

OBJECTIVE: To gain further insight into disease pathophysiologic process and potential adaptations through investigating whether cortical dysfunction or plasticity is a feature of spinal muscle atrophy (SMA).

DESIGN: Prospective, double-center study.

SETTING: Outpatient clinics and research institute.

PARTICIPANTS: Clinical assessments, combined with threshold-tracking transcranial magnetic stimulation techniques, were completed in 11 genetically characterized patients with SMA.

MAIN OUTCOME MEASURES: Clinical, functional, and neurophysiologic variables were compared between the 11 patients with SMA types 2 and 3, 24 healthy control participants, and 81 patients with amyotrophic lateral sclerosis (ALS) serving as disease controls.

RESULTS: Maximal motor-evoked potential amplitude as a percentage of the compound muscle action potential was significantly increased in patients with SMA compared with the healthy controls but was similar to that in ALS (SMA, mean [SE], 39.7% [4.0%]; ALS, 38.8% [2.8%]; controls, 20.3% [2.5%]; F = 10.1; P < .001). In contrast, short-interval intracortical inhibition (SMA, 14.4% [1.6%]; ALS, 4.3% [1.8%]; controls, 17.0% [2.3%]; F = 11.4; P < .001) and cortical silent-period duration (SMA, 204.4 [9.8] milliseconds; ALS, 182.7 [5.2] milliseconds; controls, 208.8 [3.7] milliseconds; F = 4.8; P = .01), similar between SMA patients and healthy controls, were significantly larger when compared with the findings in ALS. Of relevance, peripheral disease burden as measured by the compound muscle action potential amplitude (SMA, 6.3 [0.8] mV; ALS, 5.9 [0.4] mV; controls, 11.8 [0.5] mV; F = 35.5; P < .001) and Neurophysiological Index (SMA, 0.7 [0.2]; ALS, 0.7 [0.1]; controls, 3.1 [0.2]; F = 108.2; P < .001), were significantly reduced in both SMA and ALS patients when compared with healthy controls.

CONCLUSIONS: Taken together, findings from the present study suggest that despite spinal motoneuron degeneration there remains preservation of corticomotoneuronal function in SMA. The greater corticomotoneuronal projections to surviving spinal motoneurons likely represent an adaptive response to spinal motoneuron degeneration in SMA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app