Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma.

Loss or decreased expression of runt-related transcription factor 3 (RUNX3), a tumor suppressor gene involved in gastric and other cancers, has been frequently observed in hepatocellular carcinoma (HCC). The objective of this study was to identify the regulatory mechanism of the epithelial-mesenchymal transition (EMT) by RUNX3 in HCC. Human HCC cell lines, Hep3B, Huh7, HLF and SK-Hep1, were divided into low- and high-EMT lines, based on their expression of TWIST1 and SNAI2, and were used in this in vitro study. Ectopic RUNX3 expression had an anti-EMT effect in low-EMT HCC cell lines characterized by increased E-cadherin expression and decreased N-cadherin and vimentin expression. RUNX3 expression has previously been reported to reduce jagged-1 (JAG1) expression; therefore, JAG1 ligand peptide was used to reinduce EMT in RUNX3-expressing low-EMT HCC cells. Immunohistochemical analyses were performed for RUNX3, E-cadherin, N-cadherin and TWIST1 in 33 human HCC tissues, also divided into low- and high-EMT HCC, based on TWIST1 expression. E-cadherin expression was correlated positively and N-cadherin expression was correlated negatively with RUNX3 expression in low-EMT HCC tissues. Correlations between EMT markers and RUNX3 mRNA expression were analyzed using Oncomine datasets. Similarly, mRNA expression of E-cadherin was also significantly correlated with that of RUNX3 in low-EMT HCC, while mRNA expression of JAG1 was negatively correlated with that of RUNX3. These results suggest a novel mechanism by which loss or decreased expression of RUNX3 induces EMT via induction of JAG1 expression in low-EMT HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app