Aryl hydrocarbon receptor activation by aminoflavone: new molecular target for renal cancer treatment

Mariana A Callero, Guadalupe V Suárez, Gabriela Luzzani, Boris Itkin, Binh Nguyen, Andrea I Loaiza-Perez
International Journal of Oncology 2012, 41 (1): 125-34
Aminoflavone (AF; NSC 686288, AFP464, NSC710464) is a new anticancer drug that has recently entered phase II clinical trials. It has demonstrated antiproliferative effects in MCF-7 human breast cancer cells mediated by the aryl hydrocarbon receptor (AhR). AF also exhibits noteworthy evidence of antitumor activity in vitro and in vivo against neoplastic cells of renal origin. AF treatment of sensitive renal cells, in contrast to resistant cells, promotes the induction of CYP1A1, the covalent binding of AF-reactive intermediates and apoptosis. Based on this evidence, the aim of this study was to evaluate the role of AhR, the main transcriptional regulator of CYP1A1, in the antiproliferative effects of AF in human renal cancer cells. AF-cytoxicity in human renal cell lines and a renal cancer cell strain was assessed by MTS assay in the presence or absence of an Ahr inhibitor. Drug-induced AhR nuclear translocation was evaluated by western blotting of AhR in cytosolic and nuclear fractions and by measuring xenobiotic response element-driven luciferase activity. Apoptosis induced by the drug was evaluated by 4,6-diamidino-2-phenylindole and acridine orange/ethidium bromide staining and by measuring phosphorylated P53 (p-P53) and P21 levels, caspase 3 activation and poly(ADP-ribose) polymerase cleavage. AF inhibited cell growth in a dose-dependent manner in TK-10, Caki-1, SN12-C and A498 human renal cells but not in ACHN cells. The antiproliferative effect of AF was abrogated by pre-incubation of TK-10, Caki-1 and SN12-C cells with the AhR antagonist, α-naphthoflavone. AF treatment also induced apoptosis in TK-10, Caki-1 and SN12-C cells, which was not observed in ACHN cells. AF induced time-dependent AhR nuclear translocation and AhR transcriptional activity in sensitive renal cancer cell lines. A renal cell strain derived from a human papillary tumor also showed sensitivity to AF, as well as AhR pathway activation and drug-induced apoptosis. AhR translocation could be included as a marker of sensitivity to AF in sensitive renal tumor cells of different histological origin, in ongoing phase II clinical trials.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"