Add like
Add dislike
Add to saved papers

Inhibition of P-glycoprotein functionality by vandetanib may reverse cancer cell resistance to doxorubicin.

P-glycoprotein belongs to the ATP binding cassette transporters, responsible for the multidrug resistance of cancer cells. These transporters efflux hydrophobic drugs outside cells and decrease their therapeutic efficacy. The aim of this study was to investigate the effect of vandetanib, an oral tyrosine kinase inhibitor of EGFR, VEGFR 2 and RET kinases, on the functionality of P-gp after a 24h-treatment at therapeutic concentration (2μM), and its ability to increase the cytotoxicity of chemotherapeutic agents in multidrug resistance cancer cells. In this study we found that IGROV1-DXR and IGROV1-CDDP cells were resistant to doxorubicin and cisplatin respectively, compare to parental cell line IGROV1. The parental sensitive and the two resistant cell lines similarly expressed MRP1 and did not express BCRP. Moreover, in contrast to the IGROV1 and IGROV1-CDDP cells, IGROV1-DXR cell line overexpressed P-gp. Functional activity studies demonstrated that MRP1 was not functional and the MDR phenotype in IGROV1-DXR cells was linked to P-gp functionality. Results also showed that vandetanib reversed resistance to doxorubicin in IGROV1-DXR cells, but not to cisplatin in IGROV1-CDDP cells. After 24h of treatment, vandetanib increased the accumulation of rhodamine 123 and calcein AM, demonstrating a functional inhibition of the transporter. In IGROV1-DXR cell line, vandetanib reverse resistance to doxorubicin by inhibiting the functionality of P-gp. In conclusion, vandetanib should be an option for drug combination in patients already developing a P-gp mediated multidrug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app