Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.

Microbial anodes were formed from compost leachate on carbon cloth electrodes. The biofilms formed at the surface of electrodes kept at open circuit contained microorganisms that switched their metabolism towards electrode respiration in response to a few minutes of polarisation. When polarisation at -0.2 V/SCE (+0.04 V/SHE) was applied to a pre-established biofilm formed at open circuit (delayed polarisation), the bacteria developed an extracellular electron transport network that showed multiple redox systems, reaching 9.4 A/m(2) after only 3-9 days of polarisation. In contrast, when polarisation was applied from the beginning, bacteria developed a well-tuned extracellular electron transfer network concomitantly with their growth, but 36 days of polarisation were required to get current of the same order (6-8 A/m(2)). The difference in performance was attributed to the thinner, more heterogeneous structure of the biofilms obtained by delayed polarisation compared to the thick uniform structure obtained by full polarisation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app