JOURNAL ARTICLE

Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) Using real-time PCR

Ermei Chang, Shengqing Shi, Jianfeng Liu, Tielong Cheng, Liang Xue, Xiuyan Yang, Wenjuan Yang, Qian Lan, Zeping Jiang
PloS One 2012, 7 (3): e33278
22479379
Platycladus orientalis is a tree species that is highly resistant, widely adaptable, and long-lived, with lifespans of even thousands of years. To explore the mechanisms underlying these characteristics, gene expressions have been investigated at the transcriptome level by RNA-seq combined with a digital gene expression (DGE) technique. So, it is crucial to have a reliable set of reference genes to normalize the expressions of genes in P. orientalis under various conditions using the most accurate and sensitive method of quantitative real-time PCR (qRT-PCR). In this study, we selected 10 reference gene candidates from transcriptome data of P. orientalis, and examined their expression profiles by qRT-PCR using 29 different samples of P. orientalis, which were collected from plants of different ages, different tissues, and plants subjected to different treatments including cold, heat, salinity, polyethylene glycol (PEG), and abscisic acid (ABA). Three analytical software packages (geNorm, Bestkeeper, and NormFinder) were used to assess the stability of gene expression. The results showed that ubiquitin-conjugating enzyme E2 (UBC) and alpha-tubulin (aTUB) were the optimum pair of reference genes at all developmental stages and under all stress conditions. ACT7 was the most stable gene across different tissues and cold-treated samples, while UBQ was the most stably expressed reference gene for NaCl- and ABA-treated samples. In parallel, aTUB and UBC were used singly or in combination as reference genes to examine the expression levels of NAC (a homolog of AtNAC2) in plants subjected to various treatments with qRT-PCR. The results further proved the reliability of the two selected reference genes. Our study will benefit future research on the expression of genes in response to stress/senescence in P. orientalis and other members of the Cupressaceae.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22479379
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"