JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Embryonic genome activation events in buffalo (Bubalus bubalis) preimplantation embryos.

Embryonic genome activation (EGA) is the first major step towards successful initiation of preimplantation development, which culminates in the formation of implantation-competent embryos. EGA occurs at species-specific embryonic cell stages. In the present work, EGA was identified for buffalo embryos by studying the development rate of embryos in normal as well as imposed transcription block conditions, analyzing bromo-uridine triphosphate (BrUTP) incorporation rates as evidence of de novo transcription initiation, and studying the expression status of eukaryotic translation initiation factor 1A (eIF1A), U2 auxiliary splicing factor (U2AF), and polyadenylate polymerase (PAP) genes at different embryonic cell stages. Under normal, in vitro fertilization and culture conditions, about 26% and 17% of oocytes could reach morula and blastocyst stages, respectively, but no embryos could progress beyond 8-cell stages in presence of α-amanitin. Culturing embryos in the presence of BrUTP revealed a marked increase in its incorporation between 4- and 8-cell stages. All genes studied displayed an abrupt increase in expression between 4- and 8-cell stages; PAP expression was upregulated earlier from 2- to 4-cell stages. About 65% of PAP transcripts from the 4-cell stage and more than 70% of eIF1A, U2AF, and PAP transcripts at 8-cell stage embryos were found to be synthesized de novo. Together, these data suggest that a minor EGA in buffalo embryos happens from 2- to 4-cell stages, while the major EGA takes place from 4- to 8-cell stage transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app