Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Beraprost sodium, a stable prostacyclin analogue, improves insulin resistance in high-fat diet-induced obese mice.

Obesity induces hypertrophy of adipocyte resulting in production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP1 (CCL2)). These cytokines play an important role in the development of insulin resistance. Beraprost sodium (BPS), a prostaglandin I2 analogue, is reported to attenuate inflammation. In this study, we examined the effect of BPS on glucose metabolism in mice fed a high-fat diet (HFD). Four-week-old C57/B6 male mice were fed a HFD for 12 weeks (HFD group) and the treatment group received oral BPS (300 μg/kg per day) for the same period. Then, glucose metabolism, histological changes, and gene expression of white adipose tissue (WAT) were examined. Body weight was increased, and glucose intolerance and insulin resistance were developed in the HFD group. Treatment with BPS improved glucose tolerance and insulin action without body weight change. Histological analysis of WAT showed an increase in the size of adipocyte and macrophage infiltration in the HFD group, which was attenuated by BPS treatment. BPS reduced HFD-induced expression of MCP1 and TNF-α in WAT. BPS also attenuated hepatic steatosis induced by the HFD. These results suggest that BPS improved glucose intolerance possibly through suppression of inflammatory cytokines in WAT. BPS may be beneficial for the treatment of obesity-associated glucose intolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app