Add like
Add dislike
Add to saved papers

S100A4 regulates motility and invasiveness of human esophageal squamous cell carcinoma through modulating the AKT/Slug signal pathway.

The involvement of S100A4 in modulating invasiveness of esophageal squamous cell carcinoma (ESCC) cell lines was explored. It was shown that S100A4 expression is positively correlated with the degree of invasiveness in human ESCC cells. The S100A4-rich EC-1 cells displayed higher migratory and invasive cell behavior while ET-1 cells with low S100A4 expression levels displayed lower migratory and invasive cell behavior. S100A4 silencing by small interfering (siRNA) in EC-1 cells induced E-cadherin expression, and overexpression of S100A4 in a lowly invasive TE-1 cells suppressed E-cadherin expression. It is suggested that S100A4 silencing inhibit invasion via E-cadherin upregulation, and overexpression of S100A4 promote invasion via E-cadherin downregulation in ESCC cells. Compared with the vector-transfected cells, S100A4 silencing in EC-1 cells showed reduced ability of migration and invasiveness, and overexpression of S100A4 in TE-1 cells showed increased ability of migration and invasiveness via wound-healing and Transwell assay, and pseudometastatic model assay. Furthermore, re-expression of S100A4 could increase the invasive phenotypes in S100A4 siRNA transfected EC-1 cells, and S100A4 silencing could decrease the invasive phenotypes in S100A4 circular DNA (cDNA) transfected TE-1 cells. It was found that Slug is downregulated in S100A4 siRNA transfected EC-1 cells, and Slug is upregulated in S100A4 cDNA transfected TE-1 cells. It was also discovered S100A4 cDNA induced protein kinase B (AKT) phosphorylation at Serine-473(phospho-AKT [p-AKT]) levels, followed by the Slug upregulation, and S100A4 siRNA decreases the phospho-AKT levels, followed by the Slug downregulation. The data suggested that S100A4 could regulate migratory and invasive behavior of human ESCC cells through modulating AKT/Slug pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app