JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reversal of severe methotrexate-induced intestinal damage using enteral n-3 fatty acids.

Growing evidence suggests that n-3 PUFA and their specific lipid mediators can reduce the activity of inflammatory processes. In the present study, we evaluated the effects of oral n-3 PUFA supplementation on intestinal structural changes, enterocyte proliferation and apoptosis during methotrexate (MTX)-induced intestinal damage in the rat. A total of thirty-two male rats were divided into four experimental groups: control (CONTR) rats; CONTR-n-3 PUFA rats treated with oral administration of n-3 PUFA at a dose of 300 μg/kg once per d 72 h before and 72 h following vehicle injection; MTX rats treated with a single dose of MTX; MTX-n-3 PUFA rats treated with oral n-3 PUFA following the injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis determined 72 h following MTX injection. Real-time PCR was used to determine B-cell lymphoma 2 (Bcl2)-associated X protein (Bax) and Bcl2 mRNA expression. Western blotting was used to determine phosphorylated extracellular signal-related kinase, β-catenin, Bax and Bcl2 protein levels. MTX-n-3 PUFA rats demonstrated a greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in the jejunum and ileum and crypt depth in the ileum, compared with MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-n-3 PUFA rats (v. MTX) was accompanied by decreased Bax mRNA and protein expression and increased Bcl2 mRNA levels. Thus, the treatment with oral n-3 PUFA prevented mucosal injury and improved intestinal recovery following MTX-injury in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app