Add like
Add dislike
Add to saved papers

The additional value of bioelectrical impedance analysis-derived muscle mass as a screening tool in geriatric assessment for fall prevention.

BACKGROUND: The decline in skeletal muscle in old age is a factor in the development of functional limitations.

OBJECTIVE: The objective of this study was to assess if there is a correlation between muscle mass based on bioelectrical impedance analysis (BIA) detection and the fall incidence in nursing home residents and to examine the risk factors for falling in nursing home residents.

METHODS: This prospective cohort study was part of a longitudinal study on nutritional issues in 52 nursing homes in Antwerp (Belgium) from October 2007 to April 2008. Two hundred and seventy-six people aged 65 years and older were included. Each subject was assessed with BIA, the timed get-up-and-go test, the Katz score, the Mini Nutritional Assessment - Short Form and the 36-Item Short Form Health Survey. The primary outcome parameter was fall incidence during the study.

RESULTS: The prevalence of sarcopenia varied from 24.3 to 81.5% depending on which definition was used. No association was found between BIA-derived muscle mass and fall incidence. Logistic regression analysis showed that gait speed (odds ratio 1.029; p = 0.003) and mental health (odds ratio 0.981; p = 0.015) are significantly associated with fall incidence in nursing homes. A receiver operating characteristic curve showed that none of the BIA-derived muscle parameters are good predictors of the risk of falling.

CONCLUSIONS: This study shows that there is no association between sarcopenia based on BIA and fall incidence and that BIA-derived muscle mass has no additional value in predicting fall incidents compared to the timed get-up-and-go test.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app