JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase.

We investigated whether AMP-activated protein kinase (AMPK), a multi-functional regulator of energy homeostasis, is involved in transient receptor potential vanilloid type 1 (TRPV1)-mediated activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) and mice. In ECs, treatment with evodiamine, the activator of TRPV1, increased the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC) and eNOS, as revealed by western blot analysis. Inhibition of AMPK activation by compound C or dominant-negative AMPK mutant abrogated the evodiamine-induced increase in phosphorylation of AMPK and eNOS and NO bioavailability, as well as tube formation in ECs. Immunoprecipitation and two-hybrid analysis demonstrated that AMPK mediated the evodiamine-induced increase in the formation of a TRPV1-eNOS complex. Additionally, TRPV1 activation by evodiamine increased the phosphorylation of AMPK and eNOS in aortas of wild-type mice but did not activate eNOS in aortas of TRPV1-deficient mice. In mice, inhibition of AMPK activation by compound C markedly decreased evodiamine-evoked angiogenesis in Matrigel plugs and in a hind-limb ischemia model. Moreover, evodiamine-induced phosphorylation of AMPK and eNOS in aortas of apolipoprotein E deficient (ApoE(-/-)) mice was abrogated in TRPV1-deficient ApoE(-/-) mice. In conclusion, TRPV1 activation may trigger AMPK-dependent signaling, which leads to enhanced activation of AMPK and eNOS and retarded development of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app