JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Maternal high-fat diet impacts endothelial function in nonhuman primate offspring.

OBJECTIVE: The link between maternal under-nutrition and cardiovascular disease (CVD) in the offspring later in life is well recognized, but the impact of maternal over-nutrition on the offspring's cardiovascular function and subsequent risk for CVD later in life remains unclear. Here, we investigated the impact of maternal exposure to a high-fat/calorie diet (HFD) during pregnancy and early postnatal period on endothelial function of the offspring in a nonhuman primate model.

METHODS: Offspring, naturally born to either a control (CTR) diet (14% fat calories) or a HFD (36% fat calories) consumption dam, were breast-fed until weaning at about 8 months of age. After weaning, the offspring were either maintained on the same diet (CTR/CTR, HFD/HFD), or underwent a diet switch (CTR/HFD, HFD/CTR). Blood samples and arterial tissues were collected at necropsy when the animals were about 13 months of age.

RESULTS: HFD/HFD juveniles displayed an increased plasma insulin level and glucose-stimulated insulin secretion in comparison with CTR/CTR. In abdominal aorta, but not the renal artery, acetylcholine-induced vasorelaxation was decreased remarkably for HFD/HFD juveniles compared with CTR/CTR. HFD/HFD animals also showed a thicker intima wall and an abnormal vascular-morphology, concurrent with elevated expression levels of several markers related to vascular inflammation and fibrinolytic function. Diet-switching animals (HFD/CTR and CTR/HFD) displayed modest damage on the abdominal vessel.

CONCLUSION: Our data indicate that maternal HFD exposure impairs offspring's endothelial function. Both early programming events and postweaning diet contribute to the abnormalities that could be reversed partially by diet intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app