Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway.

Cancer Letters 2012 September 29
In our previous study, we found that blockade of SDF-1/CXCR4 signaling inhibits pancreatic cancer cell migration and invasion in vitro. However, the mechanism governing the downstream regulation of SDF-1/CXCR4-mediated invasion remains unclear. Here we report the role of SDF-1/CXCR4 in pancreatic cancer and the possible mechanism of SDF-1/CXCR4-mediated pancreatic cancer invasion. We show that there is a cross-talk between SDF-1/CXCR4 axis and non-canonical Hedgehog (Hh) pathway in pancreatic cancer. Furthermore, our data demonstrate that the ligand of CXCR4, SDF-1 induces CXCR4-positive pancreatic cancer invasion, epithelial-mesenchymal transition (EMT) process and activates the non-canonical Hh pathway. Moreover, we also demonstrate that the invasion of a pancreatic cancer and EMT resulting from the activation of SDF-1/CXCR4 axis is effectively inhibited by Smoothened (SMO) inhibitor cyclopamine and siRNA specific to Gli-1. Collectively, these data demonstrate that SDF-1/CXCR4 modulates the non-canonical Hh pathway by increasing the transcription of SMO in a ligand-independent manner. Taken together, SDF-1/CXCR4 axis may represent a promising therapeutic target to prevent pancreatic cancer progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app