Add like
Add dislike
Add to saved papers

Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver.

BACKGROUND: The passive leg-raising (PLR) maneuver provides a dynamic assessment of fluid responsiveness inducing a reversible increase in cardiac preload. Since its effects are sudden and transitory, a continuous cardiac output (CO) monitoring is required to appropriately assess the hemodynamic response of PLR. On the other hand, changes in partial end-tidal CO2 pressure (PETCO2) have been demonstrated to be tightly correlated with changes in CO during constant ventilation and stable tissue CO2 production (VCO2). In this study we tested the hypothesis that, assuming a constant VCO2 and under fixed ventilation, PETCO2 can track changes in CO induced by PLR and can be used to predict fluid responsiveness.

METHODS: Thirty-seven mechanically ventilated patients with acute circulatory failure were monitored with the CardioQ-ODM esophageal Doppler. A 2-minutes PLR maneuver was performed. Fluid responsiveness was defined according to CO increase (responders ≥ 15%) after volume expansion.

RESULTS: PLR-induced increases in CO and PETCO2 were strongly correlated (R2 = 0.79; P < 0.0001). The areas under the receiver-operating characteristics (ROC) curve for a PLR-induced increase in CO and PETCO2 (0.97 ± 0.03 SE; CI 95%: 0.85 to 0.99 and 0.94 ± 0.04 SE; CI 95%: 0.82 to 0.99; respectively) were not significantly different. An increase ≥ 5% in PETCO2 or ≥ 12% in CO during PLR predicted fluid responsiveness with a sensitivity of 90.5% (95% CI: 69.9 to 98.8%) and 95.2% (95% CI: 76.2 to 99.9%), respectively, and a specificity of 93.7% (95% CI: 69.8 to 99.8%).

CONCLUSION: Induced changes in PETCO2 during a PLR maneuver could be used to track changes in CO for prediction of fluid responsiveness in mechanically ventilated patients with acute circulatory failure, under fixed minute ventilation and assuming a constant tissue CO2 production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app