Add like
Add dislike
Add to saved papers

Effects of one-lung ventilation on thermodilution-derived assessment of cardiac output.

BACKGROUND: Cardiac output (CO) monitoring can be useful in high-risk patients during one-lung ventilation (OLV), but it is unclear whether thermodilution-derived CO monitoring is valid during OLV. Therefore, we compared pulmonary artery (CO(PATD)) and transcardiopulmonary thermodilution (CO(TPTD)) with an experimental reference in a porcine model.

METHODS: CO(PATD) and CO(TPTD) were measured in 23 pigs during double-lung ventilation (DLV) and 15 min after the onset of OLV, during conditions of normovolaemia and after haemorrhage. An ultrasonic flow probe placed around the pulmonary artery (CO(PAFP)) was used for reference.

RESULTS: The range of CO in these experiments was 1.5-3 litre min(-1). Normovolaemia: during DLV and conditions of normovolaemia, the mean (95% limits of agreement) bias for CO(PATD) compared with CO(PAFP) was -0.05 (-0.92 and 0.83) litre min(-1), and 0.58 (-0.40 and 1.55) litre min(-1) for CO(TPTD). During OLV, the bias for CO(PATD) remained unchanged at 0.08 (-0.51 and 0.66) litre min(-1), P=0.15, and the bias for CO(TPTD) increased significantly to 0.85 (0.05 and 1.64) litre min(-1), P=0.047. Hypovolaemia: during DLV, the bias for CO(PATD) compared with CO(PAFP) was 0.22 (-0.20 and 0.66) litre min(-1) and for CO(TPTD) was 0.60 (0.12 and 1.10) litre min(-1). There was no significant change of bias during OLV for CO(PATD) [0.30 (-0.10 and 0.70) (litre min(-1)), P=0.25] or bias CO(TPTD) [0.72 (0.21 and 1.22) (litre min(-1)), P=0.14]. Trending ability during OLV, quantified by the mean of angles θ, showed good values for both CO(PATD) (θ=11.2°) and CO(TPTD) (θ=1.3°).

CONCLUSIONS: CO(TPTD) is, to some extent, affected by OLV, whereas CO(PATD) is unchanged. Nonetheless, both methods provide an acceptable estimation of CO and particularly of relative changes of CO during OLV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app