JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells.

Cancer Science 2012 June
Cancer stem cells (CSCs) are predicted to be critical drivers of tumor progression due to their "stemness", but the molecular mechanism of CSCs in regulating metastasis remains to be elucidated. Epithelial-mesenchymal transition (EMT), hypoxia-inducible factor (HIF)-1α, and miR-21, all of which contribute to cell migration for metastasis, are interrelated with CSCs. In the present study, third-sphere forming (3-S) CSC-like cells, which showed elevated CSC surface markers (ALDH1(+) and CD44(+)/CD24(-/low)) and sphereforming capacity as well as migration and invasion capacities, were cultured and isolated from breast cancer MCF-7 parental cells, to evaluate the role of miR-21 in regulating the CSC-like cell biological features, especially EMT. EMT, which was assessed by overexpression of mesenchymal cell markers (N-cadherin, Vimentin, alpha-smooth muscle actin [α-SMA]) and suppression of epithelial cell marker (E-cadherin), was induced in 3-S CSC-like cells. Moreover, both of HIF-1α and miR-21 were upregulated in the CSC-like cells. Interestingly, antagonism of miR-21 by antagomir led to reversal of EMT, downexpression of HIF-1α, as well as suppression of invasion and migration, which indicates a key role of miR-21 involved in regulate CSC-associated features. In conclusion, we demonstrated that the formation of CSC-like cells undergoing process of EMT-like associated with overexpression of HIF-1α, both of which are regulated by miR-21.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app