Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering.

Ambient temperature fluctuates diurnally and seasonally. It profoundly influences the timing of flowering in plants. The floral integrator FLOWERING LOCUS T (FT) mediates ambient temperature signals via the thermosensory pathway in Arabidopsis flowering. microRNA172 (miR172), which promotes flowering by inducing FT, also responds to changes in ambient temperature. However, it is largely unknown how miR172 integrates ambient temperature signals into the flowering genetic network. Here, we show that Arabidopsis RNA-binding protein FCA promotes the processing of primary microRNA172 transcripts (pri-miR172) in response to changes in ambient temperature. Ambient temperature regulates miR172 biogenesis primarily at the pri-miR172 processing step. miR172 abundance is elevated at 23 °C but not at 16 °C. miR172 accumulation at 23 °C requires functional FCA. FCA binds to the flanking sequences of the stem-loop within the pri-miR172 transcripts via the RNA recognition motif. FCA also binds to the primary transcripts of other temperature-responsive miRNAs, such as miR398 and miR399. Notably, levels of FCA mRNAs and proteins increase at 23 °C but remain low at 16 °C, supporting the role of FCA in temperature perception. Our data show that FCA regulation of miR172 processing is an early event in the thermosensory flowering pathway. We propose that the FCA-miR172 regulon provides an adaptive strategy that fine tunes the onset of flowering under fluctuating ambient temperature conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app