Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients.

INTRODUCTION: A gene expression signature indicative of activated wound responses is common to more than 90% of non-neoplastic tissues adjacent to breast cancer, but these tissues also exhibit substantial heterogeneity. We hypothesized that gene expression subtypes of breast cancer microenvironment can be defined and that these microenvironment subtypes have clinical relevance.

METHODS: Gene expression was evaluated in 72 patient-derived breast tissue samples adjacent to invasive breast cancer or ductal carcinoma in situ. Unsupervised clustering identified two distinct gene expression subgroups that differed in expression of genes involved in activation of fibrosis, cellular movement, cell adhesion and cell-cell contact. We evaluated the prognostic relevance of extratumoral subtype (comparing the Active group, defined by high expression of fibrosis and cellular movement genes, to the Inactive group, defined by high expression of claudins and other cellular adhesion and cell-cell contact genes) using clinical data. To establish the biological characteristics of these subtypes, gene expression profiles were compared against published and novel tumor and tumor stroma-derived signatures (Twist-related protein 1 (TWIST1) overexpression, transforming growth factor beta (TGF-β)-induced fibroblast activation, breast fibrosis, claudin-low tumor subtype and estrogen response). Histological and immunohistochemical analyses of tissues representing each microenvironment subtype were performed to evaluate protein expression and compositional differences between microenvironment subtypes.

RESULTS: Extratumoral Active versus Inactive subtypes were not significantly associated with overall survival among all patients (hazard ratio (HR) = 1.4, 95% CI 0.6 to 2.8, P = 0.337), but there was a strong association with overall survival among estrogen receptor (ER) positive patients (HR = 2.5, 95% CI 0.9 to 6.7, P = 0.062) and hormone-treated patients (HR = 2.6, 95% CI 1.0 to 7.0, P = 0.045). The Active subtype of breast microenvironment is correlated with TWIST-overexpression signatures and shares features of claudin-low breast cancers. The Active subtype was also associated with expression of TGF-β induced fibroblast activation signatures, but there was no significant association between Active/Inactive microenvironment and desmoid type fibrosis or estrogen response gene expression signatures. Consistent with the RNA expression profiles, Active cancer-adjacent tissues exhibited higher density of TWIST nuclear staining, predominantly in epithelium, and no evidence of increased fibrosis.

CONCLUSIONS: These results document the presence of two distinct subtypes of microenvironment, with Active versus Inactive cancer-adjacent extratumoral microenvironment influencing the aggressiveness and outcome of ER-positive human breast cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app