JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Disruption of Type-I IFN pathway ameliorates preservation damage in mouse orthotopic liver transplantation via HO-1 dependent mechanism.

Ischemia/reperfusion injury (IRI) remains unresolved problem in clinical organ transplantation. We analyzed the role of Type-I interferon (IFN) pathway in a clinically relevant murine model of extended hepatic cold preservation followed by orthotopic liver transplantation (OLT). Livers from Type-I IFN receptor (IFNAR) knockout (KO) or wild-type (WT) mice (C57/BL6) were harvested, preserved at 4°C in UW solution for 20 h and transplanted to groups of syngeneic IFNAR KO or WT recipients. Liver graft but not recipient IFNAR deficiency was required to consistently ameliorate IRI in OLTs. Indeed, disruption of Type-I IFN signaling decreased serum alanine aminotransferase (sALT) levels (p < 0.001), diminished Suzuki's score of histological OLT damage (p < 0.01) and improved 14-day survival (from 42%[5/12] in WT to 92%[11/12] in IFNAR KO; p < 0.05). Unlike in WT group, IFNAR deficiency attenuated OLT expression of TNF-α, IL-1β, IL-6, MCP-1, CXCL-10, ICAM-1; diminished infiltration by macrophages/PMNs; and enhanced expression of antioxidant HO-1/Nrf2. The frequency of TUNEL+ apoptotic cells and caspase-3 activity/expression selectively decreased in IFNAR KO group. Small interfering (si)RNA-directed targeting of HO-1 restored cardinal features of liver IRI in otherwise resistant IFNAR-deficient OLTs. Thus, intact Type-I IFN signaling is required for hepatic IRI, whereas HO-1 is needed for cytoprotection against innate immunity-dominated organ preservation damage in IFNAR-deficient liver transplants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app