JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs.

OBJECTIVE: Despite the introduction of mild therapeutic hypothermia into postcardiac arrest care, cerebral and myocardial injuries represent the limiting factors for survival after cardiac arrest. Administering xenon may confer an additional neuroprotective effect after successful cardiopulmonary resuscitation due to its ability to stabilize cellular calcium homeostasis via N-methyl-D-aspartate-receptor antagonism.

DESIGN: In a porcine model, we evaluated effects of xenon treatment in addition to therapeutic hypothermia on neuropathologic and functional outcomes after cardiopulmonary resuscitation.

SETTING: Prospective, randomized, laboratory animal study.

SUBJECTS: Fifteen male pigs.

INTERVENTIONS: Following 10 mins of cardiac arrest and 6 mins of cardiopulmonary resuscitation, ten pigs were randomized to receive either mild therapeutic hypothermia (33°C for 16 hrs) or mild therapeutic hypothermia 1 xenon (70% for 1 hr). Five animals served as normothermic controls.

MEASUREMENTS AND MAIN RESULTS: Gross hemodynamic variables were measured using right-heart catheterization. Neurocognitive performance was evaluated for 5 days after cardiopulmonary resuscitation using a neurologic deficit score before the brains were harvested for histopathological analysis. All animals survived the observation period in the mild therapeutic hypothermia 1 xenon group while one animal in each of the other two groups died. Mild therapeutic hypothermia 1 xenon preserved cardiac output during the induction of mild therapeutic hypothermia significantly better than did mild therapeutic hypothermia alone (4.6 6 0.6 L/min vs. 3.2 6 1.6 L/min, p # .05). Both treatment groups showed significantly fewer necrotic lesions in the cerebral cortex, caudate nucleus, putamen, and in hippocampal sectors CA1 and CA3/4. However, only the combination of mild therapeutic hypothermia and xenon resulted in reduced astrogliosis in the CA1 sector and diminished microgliosis and perivascular inflammation in the putamen. Clinically, only the mild therapeutic hypothermia 1 xenon-treated animals showed significantly improved neurologic deficit scores over time (day 1 = 59.0 6 27.0 vs. day 5 = 4.0 6 5.5, p ø .05) as well as in comparison to the untreated controls on days 3 through 5 after cardiopulmonary resuscitation.

CONCLUSIONS: These results demonstrate that even a short exposure to xenon during induction of mild therapeutic hypothermia results in significant improvements in functional recovery and ameliorated myocardial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app