JOURNAL ARTICLE

Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family

Sha Luo, Yu Zhang, Qun Hu, Jiongjiong Chen, Kunpeng Li, Chen Lu, Hui Liu, Wen Wang, Hanhui Kuang
Plant Physiology 2012, 159 (1): 197-210
22422941
The proper use of resistance genes (R genes) requires a comprehensive understanding of their genomics and evolution. We analyzed genes encoding nucleotide-binding sites and leucine-rich repeats in the genomes of rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), and Brachypodium distachyon. Frequent deletions and translocations of R genes generated prevalent presence/absence polymorphism between different accessions/species. The deletions were caused by unequal crossover, homologous repair, nonhomologous repair, or other unknown mechanisms. R gene loci identified from different genomes were mapped onto the chromosomes of rice cv Nipponbare using comparative genomics, resulting in an integrated map of 495 R loci. Sequence analysis of R genes from the partially sequenced genomes of an African rice cultivar and 10 wild accessions suggested that there are many additional R gene lineages in the AA genome of Oryza. The R genes with chimeric structures (termed type I R genes) are diverse in different rice accessions but only account for 5.8% of all R genes in the Nipponbare genome. In contrast, the vast majority of R genes in the rice genome are type II R genes, which are highly conserved in different accessions. Surprisingly, pseudogene-causing mutations in some type II lineages are often conserved, indicating that their conservations were not due to their functions. Functional R genes cloned from rice so far have more type II R genes than type I R genes, but type I R genes are predicted to contribute considerable diversity in wild species. Type I R genes tend to reduce the microsynteny of their flanking regions significantly more than type II R genes, and their flanking regions have slightly but significantly lower G/C content than those of type II R genes.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22422941
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"