JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner.

Recent evidences suggest that the extracts of plant products are able to modulate innate immune responses. A saponin GL and a chalcone ILG are representative components of Glycyrrhiza uralensis, which attenuate inflammatory responses mediated by TLRs. Here, we show that GL and ILG suppress different steps of the LPS sensor TLR4/MD-2 complex signaling at the receptor level. Extract of G. uralensis suppressed IL-6 and TNF-α production induced by lipid A moiety of LPS in RAW264.7 cells. Among various G. uralensis-related components of saponins and flavanones/chalcones, GL and ILG could suppress IL-6 production induced by lipid A in dose-dependent manners in RAW264.7 cells. Furthermore, elevation of plasma TNF-α in LPS-injected mice was attenuated by passive administration of GL or ILG. GL and ILG inhibited lipid A-induced NF-κB activation in Ba/F3 cells expressing TLR4/MD-2 and CD14 and BMMs. These components also inhibited activation of MAPKs, including JNK, p38, and ERK in BMMs. In addition, GL and ILG inhibited NF-κB activation and IL-6 production induced by paclitaxel, a nonbacterial TLR4 ligand. Interestingly, GL attenuated the formation of the LPS-TLR4/MD-2 complexes, resulting in inhibition of homodimerization of TLR4. Although ILG did not affect LPS binding to TLR4/MD-2, it could inhibit LPS-induced TLR4 homodimerization. These results imply that GL and ILG modulate the TLR4/MD-2 complex at the receptor level, leading to suppress LPS-induced activation of signaling cascades and cytokine production, but their effects are exerted at different steps of TLR4/MD-2 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app