Adaptive blinded sample size adjustment for comparing two normal means—a mostly Bayesian approach

Andrew M Hartley
Pharmaceutical Statistics 2012, 11 (3): 230-40
Adaptive sample size redetermination (SSR) for clinical trials consists of examining early subsets of on-trial data to adjust prior estimates of statistical parameters and sample size requirements. Blinded SSR, in particular, while in use already, seems poised to proliferate even further because it obviates many logistical complications of unblinded methods and it generally introduces little or no statistical or operational bias. On the other hand, current blinded SSR methods offer little to no new information about the treatment effect (TE); the obvious resulting problem is that the TE estimate scientists might simply 'plug in' to the sample size formulae could be severely wrong. This paper proposes a blinded SSR method that formally synthesizes sample data with prior knowledge about the TE and the within-treatment variance. It evaluates the method in terms of the type 1 error rate, the bias of the estimated TE, and the average deviation from the targeted power. The method is shown to reduce this average deviation, in comparison with another established method, over a range of situations. The paper illustrates the use of the proposed method with an example.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"