JOURNAL ARTICLE
MULTICENTER STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Some biomarkers of acute kidney injury are increased in pre-renal acute injury.

Pre-renal acute kidney injury (AKI) is assumed to represent a physiological response to underperfusion. Its diagnosis is retrospective after a transient rise in plasma creatinine, usually associated with evidence of altered tubular transport, particularly that of sodium. In order to test whether pre-renal AKI is reversible because injury is less severe than that of sustained AKI, we measured urinary biomarkers of injury (cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), γ-glutamyl transpeptidase, IL-18, and kidney injury molecule-1 (KIM-1)) at 0, 12, and 24 h following ICU admission. A total of 529 patients were stratified into groups having no AKI, AKI with recovery by 24 h, recovery by 48 h, or the composite of AKI greater than 48 h or dialysis. Pre-renal AKI was identified in 61 patients as acute injury with recovery within 48 h and a fractional sodium excretion <1%. Biomarker concentrations significantly and progressively increased with the duration of AKI. After restricting the AKI recovery within the 48 h cohort to pre-renal AKI, this increase remained significant. The median concentration of KIM-1, cystatin C, and IL-18 were significantly greater in pre-renal AKI compared with no-AKI, while NGAL and γ-glutamyl transpeptidase concentrations were not significant. The median concentration of at least one biomarker was increased in all but three patients with pre-renal AKI. Thus, the reason why some but not all biomarkers were increased requires further study. The results suggest that pre-renal AKI represents a milder form of injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app