JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development.

BACKGROUND: Kallmann syndrome (KS) is a genetic disorder associating pubertal failure with congenitally absent or impaired sense of smell. KS is related to defective neuronal development affecting both the migration of olfactory nerve endings and GnRH neurons. The discovery of several genetic mutations responsible for KS led to the identification of signaling pathways involved in these processes, but the mutations so far identified account for only 30% of cases of KS. Here, we attempted to identify new genes responsible for KS by using a pan-genomic approach.

METHODS: From a cohort of 120 KS patients, we selected 48 propositi with no mutations in known KS genes. They were analyzed by comparative genomic hybridization array, using Agilent 105K oligonucleotide chips with a mean resolution of 50 kb.

RESULTS: One propositus was found to have a heterozygous deletion of 213 kb at locus 7q21.11, confirmed by real-time qPCR, deleting 11 of the 17 SEMA3A exons. This deletion cosegregated in the propositus' family with the KS phenotype, that was transmitted in autosomal dominant fashion and was not associated with other neurological or non-neurological clinical disorders. SEMA3A codes for semaphorin 3A, a protein that interacts with neuropilins. Mice lacking semaphorin 3A expression have been showed to have a Kallmann-like phenotype.

CONCLUSIONS: SEMA3A is therefore a new gene whose loss-of-function is involved in KS. These findings validate the specific role of semaphorin 3A in the development of the olfactory system and in neuronal control of puberty in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app