Add like
Add dislike
Add to saved papers

Supported Pd-Cu bimetallic nanoparticles that have high activity for the electrochemical oxidation of methanol.

Monodisperse bimetallic Pd-Cu nanoparticles with controllable size and composition were synthesized by a one-step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd(85)-Cu(15), Pd(56)-Cu(44), and Pd(39)-Cu(61). The nanoparticles were separated from the solution mixture by extraction with non-polar solvents, such as n-hexane. Monodisperse bimetallic Pd-Cu nanoparticles with narrow size-distribution were obtained without the need for a size-selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as-prepared nanoparticles were loaded onto a Vulcan XC-72 carbon support. Supported bimetallic Pd-Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd-Cu catalyst that contained 15 % Cu, the activity was even comparable to the state-of-the-art commercially available Pt/C catalysts. A STEM-HAADF study indicated that the formation of random solid-solution alloy structures in the bimetallic Pd(85)-Cu(15)/C catalysts played a key role in improving the electrochemical activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app