Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lipopolysaccharide enhances decorin expression through the Toll-like receptor 4, myeloid differentiating factor 88, nuclear factor-kappa B, and mitogen-activated protein kinase pathways in odontoblast cells.

INTRODUCTION: Lipopolysaccharide (LPS) has been shown to regulate the function of odontoblasts. However, the molecular mechanisms of the effect of LPS on odontoblasts are poorly understood. Decorin (DCN), one of the major matrix proteoglycans, is known to affect the mineralization of teeth. In this study, we investigated whether LPS can regulate the expression of DCN in odontoblasts and determined the intracellular signaling pathways triggered by LPS.

METHODS: The DCN messenger RNA and protein expression changes in mouse odontoblast-lineage cells (OLCs) were detected by real-time polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). Whether TLR4, myeloid differentiating factor 88 (MyD88), nuclear factor-kappa B (NF-κB), or mitogen-activated protein kinase (MAPK) pathways were involved in the LPS-induced DCN expression was determined by examined real-time PCR, ELISA, and luciferase activity assay. The activation of extracellular signal-regulated kinase (ERK), p38, and JNK in OLCs was measured by Western blot analysis.

RESULTS: We found that the mouse OLCs expressed DCN. DCN messenger RNA was rapidly induced by LPS in a time- and dose-dependent manner. Pretreatment with a MyD88 inhibitory peptide, a TLR4 antibody, or a specific inhibitor for NF-κB or I Kappa B alpha (IκBα) significantly inhibited LPS-induced DCN expression. Moreover, the LPS-mediated increase in κB-luciferase activity in OLCs was suppressed by the overexpression of dominant negative mutants of TLR4, MyD88, and IκBα but not by a dominant negative mutant of TLR2. In addition, LPS stimulation activated the ERK, p38, and JNK MAPK pathways. The pretreatment of OLCs with specific inhibitors of the ERK, p38, and JNK MAPK pathways markedly offset the LPS-induced up-regulation of DCN expression.

CONCLUSIONS: Our results show that LPS stimulation can up-regulate the gene expression of DCN via the TLR4, MyD88, NF-κB, and MAPK pathways in odontoblast cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app