JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of trabecular microarchitecture in nonosteoporotic postmenopausal women with and without fracture.

This study compared microscopic magnetic resonance imaging (µMRI) parameters of trabecular microarchitecture between postmenopausal women with and without fracture who have normal or osteopenic bone mineral density (BMD) on dual-energy X-ray absorptiometry (DXA). It included 36 postmenopausal white women 50 years of age and older with normal or osteopenic BMD (T-scores better than -2.5 at the lumbar spine, proximal femur, and one-third radius on DXA). Eighteen women had a history of low-energy fracture, whereas 18 women had no history of fracture and served as an age, race, and ultradistal radius BMD-matched control group. A three-dimensional fast large-angle spin-echo (FLASE) sequence with 137 µm × 137 µm × 400 µm resolution was performed through the nondominant wrist of all 36 women using the same 1.5T scanner. The high-resolution images were used to measure trabecular bone volume fraction, trabecular thickness, surface-to-curve ratio, and erosion index. Wilcoxon signed-rank tests were used to compare differences in BMD and µMRI parameters between postmenopausal women with and without fracture. Post-menopausal women with fracture had significantly lower (p < 0.05) trabecular bone volume fraction and surface-to-curve ratio and significantly higher (p < 0.05) erosion index than postmenopausal women without fracture. There was no significant difference between postmenopausal women with and without fracture in trabecular thickness (p = 0.80) and BMD of the spine (p = 0.21), proximal femur (p = 0.19), one-third radius (p = 0.47), and ultradistal radius (p = 0.90). Postmenopausal women with normal or osteopenic BMD who had a history of low-energy fracture had significantly different (p < 0.05) µMRI parameters than an age, race, and ultradistal radius BMD-matched control group of postmenopausal women with no history of fracture. Our study suggests that µMRI can be used to identify individuals without a DXA-based diagnosis of osteoporosis who have impaired trabecular microarchitecture and thus a heretofore-unappreciated elevated fracture risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app