JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pretreatment cerebral metabolic activity correlates with antidepressant efficacy of vagus nerve stimulation in treatment-resistant major depression: a potential marker for response?

BACKGROUND: Pretreatment brain activity in major depressive disorder correlates with response to antidepressant therapies, including pharmacotherapies and transcranial magnetic stimulation. The purpose of this trial was to examine whether pretreatment regional metabolic activity in selected regions of interest (ROIs) predicts antidepressant response following 12 months of vagus nerve stimulation (VNS) in 15 patients with treatment-resistant major depression (TRMD).

METHODS: Fluorodeoxyglucose positron emission tomography (FDG PET) was used to assess regional mean relative cerebral metabolic rate for glucose (CMRGlu) in four ROIs (anterior insular, orbitofrontal, anterior cingulate, and dorsolateral prefrontal cortices) at baseline (prior to VNS activation). Depression severity was assessed at baseline and after 12 months of VNS using the Hamilton Depression Rating Scale (HDRS), with response defined as ≥ 50% reduction in HDRS from baseline.

RESULTS: Baseline CMRGlu in the anterior insular cortex differentiated VNS responders (n=11) from nonresponders (n=4) and correlated with HDRS change (r=.64, p=.01). In a regression analysis, lower anterior insular cortex CMRGlu (p=.004) and higher orbitofrontal cortex CMRGlu (p=.047) together predicted HDRS change (R(2)=.58, p=.005). In a whole brain, voxel-wise analysis, baseline CMRGlu in the right anterior insular cortex correlated with HDRS change (r=.78, p=.001).

LIMITATIONS: Sample size was small, limiting statistical power; patients remained on their psychiatric medications; study was open-label and uncontrolled.

CONCLUSIONS: This preliminary study suggests that pretreatment regional CMRGlu may be useful in predicting response to VNS in TRMD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app