Add like
Add dislike
Add to saved papers

The effects of temozolomide delivered by prolonged intracerebral microinfusion against the rat brainstem GBM allograft model.

OBJECTIVE: Diffuse intrinsic brainstem gliomas are considered to be inoperable. We report our initial experience of temozolomide (TMZ) administration into brainstem by intracerebral (i.c.) microinfusion using a rat brainstem glioblastoma allograft model.

METHODS: Forty-eight Fischer 344 female rats were used. In a feasibility study, various doses of i.c.-TMZ (1-10 mg) were administered into the brainstem using AlzetTM pumps in order to evaluate survival rates and neurotoxicity. For tumor implantation, rats received an injection of 10(5) 9 L gliosarcoma cells. For local therapy, 5 days after inoculation, a total amount of 1 mg of TMZ or saline was administered into the brainstem at 1 μl/h over 7 days (n = 8/group). For systemic therapy, rats were treated with an orally administered maximum daily dose of 50 mg/kg TMZ for 5 consecutive days. Survival time and neurological deficit were recorded as outcome parameters.

RESULTS: In the neurotoxicity study, low dose TMZ (1 mg) was feasible to be administered into brainstem over 7 days without neurological deficit. Using high dose TMZ (5-10 mg), marked neurotoxic effect was observed. In the brainstem tumor study, survival was significantly prolonged in low dose i.c.-TMZ group compared to control rats (median survival 23.5 versus 29.5 days; p < 0.01). Systemic therapy with maximal oral-TMZ dose resulted in longer survival time compared to low dose i.c.-TMZ group (median survival 33.5 versus 29.5 days; p < 0.01).

CONCLUSIONS: i.c.-TMZ is feasible and effective against rat brainstem glioblastoma allograft. However, we could not show superior potential of i.c.-TMZ compared to oral-TMZ administration. Modification of TMZ infusion with systemic therapy warrants future investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app