JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1.

The origins of enzyme specificity are well established. However, the molecular details underlying the ability of a single active site to promiscuously bind different substrates and catalyze different reactions remain largely unknown. To better understand the molecular basis of enzyme promiscuity, we studied the mammalian serum paraoxonase 1 (PON1) whose native substrates are lipophilic lactones. We describe the crystal structures of PON1 at a catalytically relevant pH and of its complex with a lactone analogue. The various PON1 structures and the analysis of active-site mutants guided the generation of docking models of the various substrates and their reaction intermediates. The models suggest that promiscuity is driven by coincidental overlaps between the reactive intermediate for the native lactonase reaction and the ground and/or intermediate states of the promiscuous reactions. This overlap is also enabled by different active-site conformations: the lactonase activity utilizes one active-site conformation whereas the promiscuous phosphotriesterase activity utilizes another. The hydrolysis of phosphotriesters, and of the aromatic lactone dihydrocoumarin, is also driven by an alternative catalytic mode that uses only a subset of the active-site residues utilized for lactone hydrolysis. Indeed, PON1's active site shows a remarkable level of networking and versatility whereby multiple residues share the same task and individual active-site residues perform multiple tasks (e.g., binding the catalytic calcium and activating the hydrolytic water). Overall, the coexistence of multiple conformations and alternative catalytic modes within the same active site underlines PON1's promiscuity and evolutionary potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app