Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity.

Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ∼450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app