COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes.

Diabetologia 2012 May
AIMS/HYPOTHESIS: An increase in the production of reactive oxygen species is commonly thought to contribute to the development of diabetic cardiomyopathy. This study aimed to assess whether administration of the antioxidant coenzyme Q(10) would protect the diabetic heart against dysfunction and remodelling, using the db/db mouse model of type 2 diabetes. Furthermore, we aimed to compare the efficacy of coenzyme Q(10) to that of the ACE inhibitor ramipril.

METHODS: Six-week-old non-diabetic db/+ mice and diabetic db/db mice received either normal drinking water or water supplemented with coenzyme Q(10) for 10 weeks. Endpoint cardiac function was assessed by echocardiography and catheterisation. Ventricular tissue was collected for histology, gene expression and protein analysis.

RESULTS: Untreated db/db diabetic mice exhibited hyperglycaemia, accompanied by diastolic dysfunction and adverse structural remodelling, including cardiomyocyte hypertrophy, myocardial fibrosis and increased apoptosis. Systemic lipid peroxidation and myocardial superoxide generation were also elevated in db/db mice. Coenzyme Q(10) and ramipril treatment reduced superoxide generation, ameliorated diastolic dysfunction and reduced cardiomyocyte hypertrophy and fibrosis in db/db mice. Phosphorylation of Akt, although depressed in untreated db/db mice, was restored with coenzyme Q(10) administration. We postulate that preservation of cardioprotective Akt signalling may be a mechanism by which coenzyme Q(10)-treated db/db mice are protected from pathological cardiac hypertrophy.

CONCLUSIONS/INTERPRETATION: These data demonstrate that coenzyme Q(10) attenuates oxidative stress and left ventricular diastolic dysfunction and remodelling in the diabetic heart. Addition of coenzyme Q(10) to the current therapy used in diabetic patients with diastolic dysfunction warrants further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app