EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of a 5-HT(1A) receptor agonist (8-OH-DPAT) on the external urethral sphincter activity in the rat.

BACKGROUND/PURPOSE: This study examined the effects of a 5-HT(1A) receptor agonist (8-OH-DPAT) on external urethral sphincter (EUS) activity in urethane-anesthetized rats.

METHODS: An EUS electromyogram (EMG) and intravesical pressure (IVP) were simultaneously recorded during continuous cystometrographic monitoring, to provide a quantitative evaluation of EUS activity and urethral urodynamics of voiding.

RESULTS: When examining the EUS burst activity, durations of the active (AP) and silent periods (SP) as a function of the time axis, respectively, exhibited concave- and convex-shaped curves. The burst discharges of the EUS-EMG were divided into nonvoiding and voiding burst activities based on the oscillation waves of the IVP, which were located in Phases 1 and 2 of the IVP. After 8-OH-DPAT treatment, the entire burst period in Phases 1 to 2 of the IVP was significantly prolonged. The average SP in both Phases 1 and 2 significantly increased but the average APs were not affected. Urodynamic results showed decreases in the volume threshold, contraction amplitude, and residual volume as well as an increase in the contraction duration. In addition, the amplitude of bladder high-frequency oscillatory waves in the IVP and the average urethral flow rate were reduced, but the entire voiding efficiency increased.

CONCLUSION: The influences of 8-OH-DPAT on EUS burst activity and urodynamics were exactly detected by the sophisticated EMG analytic design, and the results could be a reference for the pharmacological treatment of patients with lower urinary tract dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app