JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A heat shock protein gene, CsHsp45.9, involved in the response to diverse stresses in cucumber.

Heat shock proteins (Hsps) are a family of highly conserved proteins present in all organisms. They mediate a range of cytoprotective functions as molecular chaperones and are recently reported to regulate the immune response. Using suppression subtractive hybridization, we isolated and characterized a cucumber cDNA, designated CsHsp45.9, which encodes a putative heat shock protein of 45.9 kDa protein, containing three conserved DnaJ domains belonging to the Type I Hsp40 family. Real-time quantitative RT-PCR analysis revealed that CsHsp45.9 was significantly induced in cucumber leaves inoculated with downy mildew (Pseudoperonospora cubensis) in this incompatible interaction. Gene expression was also strongly up-regulated by various abiotic stresses. CsHsp45.9 was mainly expressed in flowers with a flower-specific, stamen- and pistil-predominant expression pattern. This suggests that CsHsp45.9 harbors broad-spectrum responses to both biotic and abiotic stresses and may play a role in downy mildew resistance in cucumber.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app