JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lipoxin A4 analog attenuates morphine antinociceptive tolerance, withdrawal-induced hyperalgesia, and glial reaction and cytokine expression in the spinal cord of rat.

Neuroscience 2012 April 20
Spinal neuroinflammation has been shown to play an important role in the development of morphine tolerance and morphine withdrawal-induced hyperalgesia. Lipoxins are endogenous lipoxygenase-derived eicosanoids that can function as "braking signals" in inflammation. The present study investigated the effect of 5 (S), 6 (R)-lipoxin A4 methyl ester (LXA4ME), a stable synthetic analog of lipoxin A4, on the expression of antinociceptive tolerance and withdrawal-induced hyperalgesia in chronic morphine-treated rats. Chronic morphine administration through repeated subcutaneous injection induced the development of hyperalgesia and the expression of spinal antinociceptive tolerance to morphine. However, LXA4ME treatment significantly attenuated the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. Moreover, the administration of LXA4ME during the induction of morphine tolerance inhibited the activation of microglia and astrocytes; reduced the expression of proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α); upregulated the expression of anti-inflammatory cytokines IL-10 and transforming growth factor-β1 (TGF-β1); and inhibited nuclear factor-kappa B (NF-κB) activation at the L5 lumbar spinal cord. These results suggest that treatment of LXA(4)ME provides a potential preventative or therapeutic approach for morphine tolerance and associated abnormal pain sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app