Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Wnt/β-catenin signaling participates in cementoblast/osteoblast differentiation of dental follicle cells.

Dental follicle cells (DFCs) are reported to contain stem cells. The canonical Wnt signaling pathway plays an important role in stem cell self-renewal and tooth development through β-catenin expression. The objective of this study was to investigate whether Wnt/β-catenin signaling pathway participates in the cementoblast/osteoblast differentiation of rat DFCs. Immunohistochemistry was used to compare the expression of β-catenin in rat mandibular first molars from postnatal days 1-13. The effects of Wnt/β-catenin signaling on DFCs in vitro were examined by lithium chloride (LiCl) treatment by immunofluorescence, cell counting, dual-luciferase reporter assays, western blotting, and alkaline phosphatase activity analysis. β-Catenin expression was absent in the dental follicles on days 1 and 3 in vivo. It then progressively increased from days 5 to 13. In vitro studies of the DFCs showed that LiCl stimulation caused β-catenin, which was mainly located in the cell membrane and cytoplasm of DFCs, to be immediately transferred to the nucleus and led to the inhibition of proliferation at 12 and 24 hr. LiCl treatment also downregulated the levels of phosphorylated-β-catenin, while upregulating the levels of total β-catenin, nuclear β-catenin, osteocalcin, runt-related transcription factor 2, and collagen type I. In addition, LiCl enhanced the β-catenin/T-cell factor luciferase activity and alkaline phosphatase activity. These results suggest that Wnt/β-catenin signaling pathway positively regulates the cementoblast/osteoblast differentiation of the DFCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app