Xenopus: an ideal system for chemical genetics

Grant N Wheeler, Karen J Liu
Genesis: the Journal of Genetics and Development 2012, 50 (3): 207-18
Chemical genetics, or chemical biology, has become an increasingly powerful method for studying biological processes. The main objective of chemical genetics is the identification and use of small molecules that act directly on proteins, allowing rapid and reversible control of activity. These compounds are extremely powerful tools for researchers, particularly in biological systems that are not amenable to genetic methods. In addition, identification of small molecule interactions is an important step in the drug discovery process. Increasingly, the African frog Xenopus is being used for chemical genetic approaches. Here, we highlight the advantages of Xenopus as a first-line in vivo model for chemical screening as well as for testing reverse engineering approaches.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"