Inhibition of clathrin/dynamin-dependent internalization interferes with LPS-mediated TRAM-TRIF-dependent signaling pathway

Yanyan Wang, Yang Yang, Xin Liu, Ning Wang, Hongwei Cao, Yongling Lu, Hong Zhou, Jiang Zheng
Cellular Immunology 2012, 274 (1-2): 121-9
Recognition of lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) activates two district proinflammatory signaling pathway and initiates LPS internalization. To investigate roles of LPS internalization, a traditionally regarded metabolic pathway for LPS, in regulation of these two pathways, three internalization inhibitors, monodansylcadaverine (MDC, a clathrin inhibitor), dynasore (DS, a dynamin inhibitor) and chloroquine (CQ, an endosome acidifying maturation inhibitor) were applied to induce internalization dysfunction in macrophages. Results showed MDC and DS affected LPS internalization but did not interfere with their colocalization. Additionally, they decreased cytokines and chemokines release and inhibited signaling molecules activation mediated by TRAM-TRIF-dependent pathway as determined by protein array. In contrast, CQ did not inhibit LPS internalization but affected the colocalization. It also suppressed macrophage activation mediated by both MyD88-dependent and TRAM-TRIF-dependent pathways. The above data indicated that LPS internalization was clathrin/dynamin dependent and it was essential for activation of TRAM-TRIF-dependent signaling pathway.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"