Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza A agents targeting virus nucleoprotein.

The influenza virus nucleoprotein (NP) is an emerging target for anti-influenza drug development. Nucleozin (1) and its closely related derivatives had been identified as NP inhibitors displaying anti-influenza activity. Utilizing 1 as a lead molecule, we successfully designed and synthesized a series of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza A agents. One of the most potent compounds, 3b, inhibited the replication of various H3N2 and H1N1 influenza A virus strains with IC(50) values ranging from 0.5 to 4.6 μM. Compound 3b also strongly inhibited the replication of H5N1 (RG14), amantidine-resistant A/WSN/33 (H1N1), and oseltamivir-resistant A/WSN/1933 (H1N1, 274Y) virus strains with IC(50) values in sub-μM ranges. Further computational studies and mechanism investigation suggested that 3b might directly target influenza virus A nucleoprotein to inhibit its nuclear accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app