A simulation of speed skating performances based on a power equation

G J van Ingen Schenau, J J de Koning, G de Groot
Medicine and Science in Sports and Exercise 1990, 22 (5): 718-28
Using kinetics of aerobic and anaerobic power production as measured during supramaximal bicycle tests of five speed skaters of international level, a model of the kinetics of power production during skating is obtained. Velocity time courses of a generalized speed skater were calculated for all Olympic distances (500 m, 1000 m, 1500 m, 5000 m, and 10,000 m) by means of simulation of an equation of produced power, power dissipated to air and ice friction, and rate of change of kinetic energy of the skater. Different strategies of distribution of anaerobic energy during a race were compared. With a single equation it appeared to be possible to simulate the mean split and final times of the five distances realized during the Winter Olympics 1988 within an error which does not exceed 1.6% (mean error in final times: 0.8%). The results show that a fast acceleration (high initial power output) is crucial for the sprinting events (500 m and 1000 m). It is shown that this initial power output level is even more important than the total amount of energy available for a 500 m and 1000 m race. For the long distances the simulations show that skaters should combine a fast but short lasting start with a constant power output following the start in order to minimize air frictional losses.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"