JOURNAL ARTICLE

Functional connectivity in a rhythmic inhibitory circuit using Granger causality

Tilman Kispersky, Gabrielle J Gutierrez, Eve Marder
Neural Systems & Circuits 2011, 1 (1): 9
22330428

BACKGROUND: Understanding circuit function would be greatly facilitated by methods that allow the simultaneous estimation of the functional strengths of all of the synapses in the network during ongoing network activity. Towards that end, we used Granger causality analysis on electrical recordings from the pyloric network of the crab Cancer borealis, a small rhythmic circuit with known connectivity, and known neuronal intrinsic properties.

RESULTS: Granger causality analysis reported a causal relationship where there is no anatomical correlate because of the strong oscillatory behavior of the pyloric circuit. Additionally, we failed to find a direct relationship between synaptic strength and Granger causality in a set of pyloric circuit models.

CONCLUSIONS: We conclude that the lack of a relationship between synaptic strength and functional connectivity occurs because Granger causality essentially collapses the direct contribution of the synapse with the intrinsic properties of the postsynaptic neuron. We suggest that the richness of the dynamical properties of most biological neurons complicates the simple interpretation of the results of functional connectivity analyses using Granger causality.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22330428
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"