Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Heparin-binding epidermal growth factor-like growth factor suppresses experimental liver fibrosis in mice.

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cytoprotective agent in several organ systems but its roles in liver fibrosis are unclear. We studied the roles of HB-EGF in experimental liver fibrosis in mice and during hepatic stellate cell (HSC) activation. Thioacetamide (TAA; 100 mg/kg) was administered by intraperitoneal injection three times a week for 4 weeks to wild-type HB-EGF(+/+) or HB-EGF-null (HB-EGF(-/-)) male mice. Livers were examined for histology and expression of key fibrotic markers. Primary cultured HSCs isolated from untreated HB-EGF(+/+) or HB-EGF(-/-) mice were examined for fibrotic markers and/or cell migration either during culture-induced activation or after exogenous HB-EGF (100 ng/ml) treatment. TAA induced liver fibrosis in both HB-EGF(+/+) and HB-EGF(-/-) mice. Hepatic HB-EGF expression was decreased in TAA-treated HB-EGF(+/+) mice by 37.6% (P<0.05) as compared with animals receiving saline alone. HB-EGF(-/-) mice treated with TAA showed increased hepatic α-smooth muscle actin-positive cells and collagen deposition, and, as compared with HB-EGF(+/+) mice, TAA-stimulated hepatic mRNA levels in HB-EGF(-/-) mice were, respectively, 2.1-, 1.7-, 1.8-, 2.2-, 1.2- or 3.3-fold greater for α-smooth muscle actin, α1 chain of collagen I or III (COL1A1 or COL3A1), transforming growth factor-β1, connective tissue growth factor or tissue inhibitor of metalloproteinase-1 (P<0.05). HB-EGF expression was detectable in primary cultured HSCs from HB-EGF(+/+) mice. Both endogenous and exogenous HB-EGF inhibited HSC activation in primary culture, and HB-EGF enhanced HSC migration. These findings suggest that HB-EGF gene knockout in mice increases susceptibility to chronic TAA-induced hepatic fibrosis and that HB-EGF expression or action is associated with suppression of fibrogenic pathways in HSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app