JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex.

Biophysical Journal 2012 Februrary 9
A remarkable amount of theoretical research has been carried out to elucidate the physical origins of the recently observed long-lived quantum coherence in the electronic energy transfer process in biological photosynthetic systems. Although successful in many respects, several widely used descriptions only include an effective treatment of the protein-chromophore interactions. In this work, by combining an all-atom molecular dynamics simulation, time-dependent density functional theory, and open quantum system approaches, we successfully simulate the dynamics of the electronic energy transfer of the Fenna-Matthews-Olson pigment-protein complex. The resulting characteristic beating of populations and quantum coherences is in good agreement with the experimental results and the hierarchy equation of motion approach. The experimental absorption, linear, and circular dichroism spectra and dephasing rates are recovered at two different temperatures. In addition, we provide an extension of our method to include zero-point fluctuations of the vibrational environment. This work thus presents, to our knowledge, one of the first steps to explain the role of excitonic quantum coherence in photosynthetic light-harvesting complexes based on their atomistic and molecular description.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app